Using Bayesian networks to guide the assessment of new evidence in an appeal case
نویسندگان
چکیده
When new forensic evidence becomes available after a conviction there is no systematic framework to help lawyers to determine whether it raises sufficient questions about the verdict in order to launch an appeal. This paper presents such a framework driven by a recent case, in which a defendant was convicted primarily on the basis of audio evidence, but where subsequent analysis of the evidence revealed additional sounds that were not considered during the trial. The framework is intended to overcome the gap between what is generally known from scientific analyses and what is hypothesized in a legal setting. It is based on Bayesian networks (BNs) which have the potential to be a structured and understandable way to evaluate the evidence in a specific case context. However, BN methods suffered a setback with regards to the use in court due to the confusing way they have been used in some legal cases in the past. To address this concern, we show the extent to which the reasoning and decisions within the particular case can be made explicit and transparent. The BN approach enables us to clearly define the relevant propositions and evidence, and uses sensitivity analysis to assess the impact of the evidence under different assumptions. The results show that such a framework is suitable to identify information that is currently missing, yet clearly crucial for a valid and complete reasoning process. Furthermore, a method is provided whereby BNs can serve as a guide to not only reason with incomplete evidence in forensic cases, but also identify very specific research questions that should be addressed to extend the evidence base and solve similar issues in the future.
منابع مشابه
Developing an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects
Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...
متن کاملUse of Evidence-informed Deliberative Processes by Health Technology Assessment Agencies Around The Globe
Background Evidence-informed deliberative processes (EDPs) were recently introduced to guide health technology assessment (HTA) agencies to improve their processes towards more legitimate decision-making. The EDP framework provides guidance that covers the HTA process, ie, contextual factors, installation of an appraisal committee, selecting health technologies and criteria, assessment, a...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016